On the inference and prediction of DDoS campaigns

نویسندگان

  • Claude Fachkha
  • Elias Bou-Harb
  • Mourad Debbabi
چکیده

This work proposes a distributed denial-of-service (DDoS) inference and forecasting model that aims at providing insights to organizations, security operators, and emergency response teams during and after a DDoS attack. Specifically, our work strives to predict, within minutes, the attacks’ features, namely intensity/rate (packets/second) and size (estimated number of used compromised machines/bots). The goal is to understand the future short-term trend of the ongoing DDoS attack in terms of those features and thus provide the capability to recognize the current as well as future similar situations and hence appropriately respond to the threat. Further, our work aims at investigating DDoS campaigns by proposing a clustering approach to infer various victims targeted by the same campaign and predicting related features. Our analysis employs real darknet data to explore the feasibility of applying the inference and forecasting models on DDoS attacks and evaluate the accuracy of the predictions. To achieve our goal, our proposed approach leverages a number of time series and fluctuation analysis techniques, statistical methods, and forecasting approaches. The extracted inferences from various DDoS case studies exhibit a promising accuracy reaching at some points less than 1% error rate. Further, our approach could lead to a better understanding of the scale, speed, and size of DDoS attacks and generates inferences that could be adopted for immediate response and mitigation. Moreover, the accumulated insights could be used for the purpose of long-term large-scale DDoS analysis. Copyright © 2014 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Artificial Neural Network and Fuzzy Inference System in Prediction of Breaking Wave Characteristics

Wave height as well as water depth at the breaking point are two basic parameters which are necessary for studying coastal processes. In this study, the application of soft computing-based methods such as artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS) and semi-empirical models for prediction of these parameters are investigated. Th...

متن کامل

Prediction of toxicity of aliphatic carboxylic acids using adaptive neuro-fuzzy inference system

Toxicity of 38 aliphatic carboxylic acids was studied using non-linear quantitative structure-toxicityrelationship (QSTR) models. The adaptive neuro-fuzzy inference system (ANFIS) was used to construct thenonlinear QSTR models in all stages of study. Two ANFIS models were developed based upon differentsubsets of descriptors. The first one used log ow K and LUMO E as inputs and had good predicti...

متن کامل

Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods

Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...

متن کامل

The Prediction of Forming Limit Diagram of Low Carbon Steel Sheets Using Adaptive Fuzzy Inference System Identifier

The paper deals with devising the combination of fuzzy inference systems (FIS) and neural networks called the adaptive network fuzzy inference system (ANFIS) to determine the forming limit diagram (FLD). In this paper, FLDs are determined experimentally for two grades of low carbon steel sheets using out-of-plane (dome) formability test. The effect of different parameters such as work hardening...

متن کامل

Predicting stock prices on the Tehran Stock Exchange by a new hybridization of Fuzzy Inference System and Fuzzy Imperialist Competitive Algorithm

Investing on the stock exchange, as one of the financial resources, has always been a favorite among many investors. Today, one of the areas, where the prediction is its particular importance issue, is financial area, especially stock exchanges. The main objective of the markets is the future trend prices prediction in order to adopt a suitable strategy for buying or selling. In general, an inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Wireless Communications and Mobile Computing

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015